

СТАНДАРТЫ ДЛЯ ИЗМЕРЕНИЙ И ХАРАКТЕРИСТИКИ СВОЙСТВ НАНООБЪЕКТОВ

C.Хохлявин urist@enad.ru

Спектр разрабатываемых стандартов ИСО, предлагающих на базе существующих технологий унифицированные на международном уровне подходы к измерениям и характеристике свойств нанообъектов, достаточно широк. Эти стандарты призваны устранить барьеры на пути коммерциализации нанотехнологий и способствовать переводу созданных разработок на стадию массового изготовления новых объектов.

По мнению д-ра Ш.Ичимура [1] (Японский комитет промышленных стандартов – JISC), возглавляющего 2-ю Совместную Рабочую группу технических комитетов ИСО/ТК229 и МЭК/ТК113, потребность в подобной стандартизации будет возрастать при расширении производства нанопродукции. Соорганизатор заседаний от МЭК/ТК113, занимающуюся вопросами характеристики свойств нано-объектов, – д-р Ю.Ушику (компания Yokohama).

Обзор материалов этой группы логично начать с трех стандартов, имеющих статус технических отчетов и носящих справочный и методический характер. Их публикация ожидается до конца текущего года.

В частности, в 2010 года подготовлен рабочий проект ISO/ DTR 11808 «Нанотехнологии – Руководство по методам измерений наночастиц и пределам их применения». В 2011 году работа над ним, которую возглавляет А.Куенат (Британская национальная физическая лаборатория), будет продолжаться.

Из табл.1 видно, что руководство сфокусировано на уже существующих и вновь появляющихся методах и будет иг-

рать роль своеобразного "путеводителя" по современным технологиям и применяемым на практике методам измерений и характеризации нанообъектов. Документ будет включать краткое описание каждого метода и, при наличии возможности, представлять ссылку на соответствующий источник по практике его выполнения, а если имеется – на стандарт.

Область нанотрибологии

С лета 2010 года среди экспертов ведутся интенсивные консультации по проекту ISO/ DTR 11811 "Нанотехнологии – Руководство по методам измерений в области нанотрибологии". К сожалению, этот проект, по которому было объявлено финальное голосование, не получил необходимой поддержки и возвращен на доработку. Тем не менее, необходимо отметить, что разработка руководства (табл.2) стала ответом на интенсивное развитие данного направления.

Оценка износа и характера трения в микро- и наномасштабе становится все более важной в микроэлектромеханических (МЭМС) и наноэлектромеханических (НЭМС) системах.

Испытания позволяют получать информацию о контакте между элементами структуры в таких масштабах. Тестирование может быть выполнено в сухих условиях и при наличии смазки, давая важную информацию о производимом в системе трении и о повреждениях, происходящих в исследуемых материалах.

Руководство будет содержать детальные рекомендации о том, как следует выполнять эксперименты в микро- и нанотрибологии, обращая особое внимание на воздействие условий и параметров тестирования на получаемые результаты. Оно не предопределяет условия испытаний, которые должны использоваться в стандартизованном тесте. Их следует выбирать уже после рассмотрения возможного применения исследуемых материалов. В руководстве будут идентифицироваться ключевые требования к оборудованию, параметры тестирования, а также необходимые процедуры и протоколы измерений, гарантирующие надлежащее их выполнение. Таким образом, руководство призвано обеспечить последовательность в анализе данных и в обработке возможных ошибок.

Ожидается, что по результатам голосования в рамках Европейского технического комитета CEN/TC352 оба руководства получат общеевропейский (CEN ISO/TR 11808 и CEN ISO/TR 11811), а затем и национальный статус во всех 30 странах-членах Европейского комитета по стандартизации.

Методы измерений для мультистенных углеродных нанотрубок

В 2011 году будет продолжена работа, осуществляемая экспертами 5-й подгруппы под руководством М. Фуминори (корпорация Mitsubishi Chemical -Япония) над проектом ISO/ DTR 10929 "Нанотехнологии -Мультистенные УНТ – Набор методов измерений".

ИК фотолюминесцентная спектроскопия

В сентябре 2010 года издана техническая спецификация ISO/TS 10867:2010 "Нанотехнологии - Характеризация одностенных УНТ с использованием ИК фотолюминесцентной спектроскопии", разработанная экспертами 4-й подгруппы, организатором заседаний которой выступал Т.Оказаки (AIST –

Документ описывает стандартные способы характеризации электронных свойств одно-стенных УНТ, обусловленных малой размерностью последних. В него включены требования к аппаратуре, методам подготовки образцов, процедуре измерений, анализу полученных данных и интерпретации результатов. Важная роль в спецификации принадлежит Приложению А, носящему информативный характер и посвященному особенностям одно-стенных УНТ, синтезируемых методами "прямой пиролитической инжекции" (ППИ) и "импульсно-лазерного испарения" (ИЛИ). Эта спецификация уже получила национальный статус в ряде европейских стран: Нидерландах, Дании, Великобритании, Франции.

Таблица 1. Ст	руктура рабочего проекта ISO/DTR 11808	
Область применения		
Нормативные ссылки		
	Термины и определения	
Существенные свойства материалов, подлежащие измерению		
Перечень возможных	Существенные измеряемые параметры с определенным влиянием на характеристики наночастиц	
измеряемых	Важные параметры, имеющие определенное влияние в	
параметров	специфических областях применения Другие измеряемые параметры с потенциальным влияни-	
	ем на свойства	
	Существенные параметры с определенным влиянием на	
	характеристики нановолокон Возможные измеряемые параметры для нановолокон, на-	
	нопроводов или нанотрубок	
	Отбор проб	
	Общие указания	
Размер и его	Измеряемые параметры	
распределение	Динамическое рассеяние света (DLS), фотонная корреля-	
	ционная спектроскопия (PCS) Счетчик уплотнения частиц (СРС)	
	Счетчик сканирования подвижности частиц (SMPS)	
	Счетчик подвижности частиц (FMPS)	
	Статическое рассеяние света (SLS) Малоугловое рентгеновское рассеяние (SAXS)	
	Размерно-эксклюзионная хроматография (SEC)	
	Анализ изображения растровой электронной (SEM), про-	
	свечивающей электронной (TEM) и сканирующей зондовой микроскопии (SPM)	
	Анализ дифференциала мобильности (DMA)	
	Осаждение осадка (центробежное или иное)	
	Проточное фракционирование в поле (FFF) Рамановская спектроскопия	
	Прослеживание частиц	
	Электрокинетическая звуковая амплитуда (ESA)	
Форма	Уширение линий рентгеновской дифракции (XRDLB) Измеряемые параметры	
Форма	Существующие методы измерений	
	Поверхностная область	
Поверх-	Измеряемые параметры	
ностный заряд	Zeta-потенциал	
V	Структура	
Химия поверхности	Измеряемые параметры Оже электронная спектроскопия (AES)	
подориности	Динамично-вторичная масс-спектрометрия (D-SIMS)	
	Ионно-лучевой анализ (IBA)	
	Вторично-ионная масс-спектрометрия (SIMS) Рентгенофлюоресцентная спектроскопия с полным внеш-	
	ним отражением (TXRF)	
	УФ фотоэлектронная спектроскопия (UPS)	
	Рентгеновская фотоэлектронная спектроскопия (XPS) Спектроскопия потерь энергии электронами (EELS)	
	Сканирующая оптическая микроскопия ближнего поля (NFSOM)	
	Термогравиметрический анализ (TGA) ИК-спектроскопия ближней области (NIR)	
	Рамановская спектроскопия	
	Атомный зонд	
Характеристика порошков		
Дисперсия	Методы с измерением Zeta-потенциалом	
Агрегация-	Измеряемые параметры	
агломерация Существующие методы измерений Концентрация		
Отчетность о	концентрация Гранулометрический состав (PSD)	
результатах	Тест-отчет	

Калибровка и стандарты

Таблица 2. Структура ISO/DTR 11811

Область применения		
Термины и определения		
Значение и применение		
Принцип		
Аппаратура и материалы	Тест-системы Параметры теста	
Процедура теста	Различные типы теста Методы исследования поверхности	
Воспроизводимость		
Отчет о тесте		

Газовая хроматография

В декабре 2010 года издана техническая спецификация ISO/ TS 11251:2010 "Нанотехнологии – Характеристика изменяемых компонентов в образцах одностенных УНТ с использованием масс-спектрометрии расширенного газового анализа/газовой хроматографии" (табл.3), разработанная экспертами 6-й подгруппы во главе с Я.Сузуки (Япония).

Просвечивающая электронная микроскопия

В стадии обсуждения находится проект технической спецификации ISO/DTS 10797 "Нанотрубки – Использование при исследовании одностенных УНТ просвечивающей электронной микроскопии". Именно при помощи этого метода еще в 1991 году были обнаружены длинные цилиндрические угле-

родные образования, получившие позже название нанотрубок [1]. Первую подгруппу, эксперты которой работают по данному проекту, возглавляют А.Владар (NIST – США) и М.Сузуки (Япония). Публикация документа ожидается осенью текущего года.

Растровая электронная микроскопия

К финальному голосованию готовится проект технической спецификации ISO/DTS 10798 "Нанотрубки – Растровая электронная микроскопия и энергодисперсионный рентгеновский анализ для характеристики одностенных УНТ", разрабатываемый экспертами 2-й подгруппы во главе с Э.Леоне (США).

УФ- и ИК-спектроскопия

Экспертами 3-й подгруппы во главе с М.Юмара (AIST –

Таблица 3. Структура ISO/TS 11251:2010

Область применения		
Нормативные ссылки		
Термины и определения		
Принцип		
Аппаратура		
Подготовка образца		
Процедуры	Общие положения	
измерений	Масс-спектрометрия расширенного газового анали-	
	за (EGA/MS)	
	Масс-спектрометрия расширенного газового анали-	
	за/газовой хроматографии (EGA/GCMS)	
Анализ данных	Качественный анализ	
и интерпретация	Анализ потери массы	
результатов		
Точность и неопределенность результатов		
Отчет об испытании		

Япония) будет продолжена работа над проектом ISO/DTS 10868 "Нанотрубки – Использование УФ- ближней ИК-спектроскопии для характеристики одностенных УНТ", публикация которого ожидается в конце сего года.

Термогравиметрический анализ

Осенью 2010 года на обсуждение был представлен обновленный проект ISO/ DTS 11308 "Нанотехнологии – Использование термогравиметрического анализа (ТГА) для оценки чистоты одностенных УНТ", реализуемый экспертами Седьмой подгруппы, возглавляемой д-ром С.Хукер (NIST – США) и Н.Ли (Южная Корея).

О предыдущем проекте и его структуре уже писалось в [2]. Новый документ содержит унифицированный на международном уровне подход к применению ТГА, позволяющего определять в материале металлические примеси. В некоторых случаях метод может дать информацию также об углеродосодержащих примесях как следствие различий в температурах сгорания. Публикация настоящей спецификации ожидается уже осенью сего года.

Рамановская спектроскопия

Эксперты 8-й подгруппы во главе с д-ром А.Уокер – NIST (США) разрабатывают проект спецификации ISO/ DTS 10812 "Нанотехнологии – Использование рамановской спектроскопии для характеристики одностенных УНТ". Этот неразрушающий и неинвазивный метод позволяет исследовать структурные и химические трехмерные изображения образцов, получать детальную информацию об их химическом строении [3]. Публикация настоящей спецификации ожидается в следующем году.

ИК-спектроскопия с Фурьепреобразованием

В конце 2010 года подготовлен первый рабочий проект новой технической спецификации ISO/WD TS 14101

"Нанотехнологии – Поверхностная характеристика наночастиц золота для наноматериалов со специфическим скринингом токсичности: метод ИК-спектроскопии с Фурье-преобразованием". Над документом работали эксперты 10-й подгруппы во главе с дром Н.В.Сонг (Южнокорейский Институт стандартов и научных исследований).

По мнению ряда зарубежных исследователей [4, 5], наночастицами золота можно управлять размерами, формой и поверхностью лиганда, что делает их идеальными для изучения зависимости между физическими/химическими свойствами и их цитотоксичностью.

В ходе исследований обнаружено, что характеристики поверхности лиганда, в частности, химический состав, молекулярная структура и количество связанных молекул, играют важную роль при определении поведения наночастиц золота.

Абсорбционная ИК-спектроскопия с Фурье-преобразованием – один из эффективных способов идентификации и количественного анализа поверхности наночастиц [6, 7]. Спецификация, публикация которой ожидается в следующем году, призвана обеспечить исследователей указаниями по идентификации поверхности связанных молекул наночастиц золота до и после теста наноматериалов на цитотоксичность.

Индуктивно совмещенная плазменная массспектроскопия

На относительно раннем этапе реализации находится работа над проектом ISO/ CD TS 13278 "Нанотехнологии – Определение металлических примесей в УНТ с использованием индуктивно совмещенной плазменной масс-спектроскопии", проводимая экспертами 12-й подгруппы, возглавляемой д-ром Ч.Чен (Китайский Национальный Центр нанотехнологических исследований -NCNST). Публикация этой спецификации ожидается не ранее апреля 2012 года.

Перспективные разработки

В конце прошлого года странами-членами ИСО/ТК229 поддержана инициатива Иранского института стандартов и промышленных исследований (ISIRI) по разработке нового международного стандарта ISO 16550 "Наночастицы – Определение мурамовой кислоты как биомаркера для наночастиц серебра". Учитывая, что работа по этому проекту только началась, его публикация состоится не ранее середины 2013 года.

В декабре 2010 года Национальная служба Италии по стандартизации (UNI), возглавляющая Технический комитет ИСО/ТК142 "Оборудование для очистки воздушных и других газовых сред", распространила предложение о разработке при участии ИСО/ТК229 (СЕN/ ТС352) в рамках мандата, выданного Еврокомиссией, новой совместной технической спецификации (ISO/CEN/TS) с рабочим названием "Методология определения эффективности фильтрации среды от наноматериалов". Окончательное решение о реализации этого проекта будет принято по результатам голосования стран-членов этих технических комитетов летом текуще-

В феврале странам-членам ИСО/ТК229 направлено на голосование предложение Японии (JISC) по разработке еще одной темы. Речь идет о проекте будущей технической спецификации ISO/TS WD 17200 "Нанотехнологии – Наночастицы в порошкообразной форме – Характеристики и измерения". Голосование по этому предложению закончится 8 мая сего года, а публикация разработанного документа планируется на май 2014 года.

Настоящая статья представляет собой лишь краткий обзор и, разумеется, не может претендовать на исчерпывающее описание опубликованных и разрабатываемых международных стандартов. К сожалению, вовлечение российских специалистов в деятельность второй

совместной рабочей группы остается незначительным: Россия не возглавила ни одну из подгрупп, инициатив с ее стороны по разработке на основе российского опыта международных стандартов в данной области нет, участия в голосовании по проектам Россия не принимает. В результате наша страна, "занимается «догоняющей» стандартизацией, т. е. переводом того, что разработано за рубежом" [8].

Автор выражает искреннюю признательность д-ру Н.В.Сонг, А.Куенату и секретарю ИСО/ТК 229 Д.Хайду за любезно предоставленные материалы, изучение которых позволило подготовить данную статью.

Литература

- 1. Шинго Ичимура, Моту Юмура. Углеродные нанотрубки и фуллерены в нанотехнологиях: применение и стандартизация. Мир стандартов, 2007, № 5(16), с.26–28.
- 2. **Хохлявин С.А.** Нанотехнологии и стандарты неразрывный симбиоз. Наноиндустрия, 2010, № 3, с.32–36.
- 3. **Фишер Х.** Комбинация взаимодополняющих технологий в микроскопии. – Наноиндустрия, 2010, \mathbb{N}^2 4, c.50–52.
- 4. Catherine J. et al. Gold nanoparticles in biology: Beyond toxicity to cellular imaging, Acc. Chem. Res., 2008, 41(12), p. 1721–1730.
- 5. Chen P.C. et al. Gold nanoparticles from nanomedicine to nanosensing. Nanotechnology, Science and Applications, 2008, 1, p.45–66,
- 6. **Shukla N. et al.** FT-IR study of surfactant bonding to FePt nanoparticles, Journal of Magnetism and Magnetic Materials, 2003, 266, p.178–184.
- 7. **Dablemont** C. et al. Functionalization and grafting of platinum nanoparticles on alumina surfaces: FT-IR and XPS study, Langmuir, 2008, 24, p.5832–5841. **Клюшников В.Н.** Стандарты это реальная саморегуляция. Генеральный директор, 2010, № 11, c.16–21.

