sitemap
Наш сайт использует cookies. Продолжая просмотр, вы даёте согласие на обработку персональных данных и соглашаетесь с нашей
Политикой Конфиденциальности
Согласен
главная
eng
Поиск:
на сайте журнала
на всех сайтах РИЦ
Вход
Архив журнала
Журналы
Медиаданные
Редакционная политика
Реклама
Авторам
Контакты
© 2001-2025
РИЦ Техносфера
Все права защищены
Тел. +7 (495) 234-0110
Оферта
R&W
ISSN 1993-8578
ISSN 2687-0282 (online)
Книги по нанотехнологиям
Статьи
Наноиндустрия спецвыпуск/2025
МЕХАНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПЛЕНОК MoSi2, СФОРМИРОВАННЫХ МАГНЕТРОННЫМ РАСПЫЛЕНИЕМ, ДЛЯ СОЗДАНИЯ ТЕРМОСТАБИЛЬНЫХ МЭМС ИК-ИЗЛУЧАТЕЛЕЙ
Наноиндустрия #7-8/2025
Годовое содержание
Новости
//
все новости
26.11.2025
Итоги Российского форума «Микроэлектроника 2025»
25.11.2025
Новый российский прибор для измерения концентрации и размера наночастиц в жидкости — NP Counter
События
//
все события
c 24.03.2026 до 25.03.2026
Санкт-Петербургский международный экологический форум «Экология большого города»
c 07.04.2026 до 09.04.2026
IPhEB 2026. г. Санкт- Петербург
Вход:
Ваш e-mail:
Пароль:
- запомнить меня
Регистрация
Забыли пароль?
Архив журнала:
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
Медиаданные:
О журнале
О публикациях
Предметная область и рубрикатор
Редакционная коллегия
Редакционный совет
Распространение
Учредитель
Издатель
План издания
Редакционная политика:
Редакционная политика РИЦ «ТЕХНОСФЕРА»
Редакционная политика журнала "НАНОИНДУСТРИЯ"
Реклама:
В журнале
На сайте
Отдел рекламы
Авторам:
Стратегия оформления
Наукометрия
Соискателям учёной степени
Требования к статьям и рецензирование
Контакты:
Распространение
Адрес
Редакция
Соцсети
Журналы:
Электроника НТБ
Наноиндустрия
Первая миля
Фотоника
Аналитика
Станкоинструмент
Книги по нанотехнологиям
читать книгу
Под ред. М.Я. Мельникова, Л.И. Трахтенберга
Гибридные наноформы биоактивных и лекарственных веществ
читать книгу
Полмеар Я.
Легкие сплавы: от традиционных до нанокристаллов
читать книгу
Под ред. Бхатнагара А.
Легкие баллистические материалы
Другие серии книг:
Мир материалов и технологий
Библиотека Института стратегий развития
Мир квантовых технологий
Мир математики
Мир физики и техники
Мир биологии и медицины
Мир химии
Мир наук о Земле
Мир электроники
Мир программирования
Мир связи
Мир строительства
Мир цифровой обработки
Мир экономики
Мир дизайна
Мир увлечений
Мир робототехники и мехатроники
Для кофейников
Мир радиоэлектроники
Библиотечка «КВАНТ»
Умный дом
Мировые бренды
Вне серий
Библиотека климатехника
Мир транспорта
Мир фотоники
Мир станкостроения
Мир метрологии
Мир энергетики
Книги, изданные при поддержке РФФИ
Тег "3d-печать"
Аналитика #2/2025
Д. А. Трофимов, А. А. Ушкарев
Применение аддитивных технологий в аналитической химии
10.22184/2227-572X.2025.15.2.122.131 Сегодняшний день отмечен активным внедрением в различные сферы науки и производства аддитивных технологий, позволяющих создавать устройства, функциональные прототипы и конструкции со сложной геометрией. Использование аддитивных технологий в аналитической химии открывает новые возможности перед исследователями: существенно сокращаются временные и экономические затраты на разработку и изготовление новых устройств, реакторов, специализированной химической посуды и т. п. Одно из наиболее перспективных направлений связано с применением 3D-печати для создания нового оборудования и выпуска деталей со сложной внутренней пространственной конфигурацией, в том числе для ремонта аналитического оборудования. В статье приведено описание оборудования и материалов, используемых в аддитивных технологиях, и примеры успешного их применения для решения задач аналитической химии.
Станкоинструмент #1/2024
П. А. Петров, И. А. Бурлаков, П. А. Полшков, М. А. Чибизов, Б. Ю. Сапрыкин
Изучение метода повышения прочности филамента PLA
DOI: 10.22184/2499-9407.2024.34.1.60.63 Приведены результаты сравнительного анализа прочностных характеристик заготовок, полученных с применением 3D-печати из филамента PLA фирмы ESUN, которые были подвергнуты отпуску при различных температурах.
Станкоинструмент #1/2023
П. А. Петров, И. А. Бурлаков, П. А. Полшков, М. А. Чибизов, Б. Ю. Сапрыкин
Повышение прочности формообразующего инструмента из полилактида PLA методом закалки
DOI: 10.22184/2499-9407.2023.30.1.58.65 Приведены результаты исследований комплекса свойств термопластичного полимера – полилактида (PLA), на основании которых выбран режим 3D-печати формообразующего инструмента, применяемого для пространственной гибки стальных труб малого диаметра. Определен оптимальный режим закалки, обеспечивающий лучший комплекс механических свойств инструмента.
Фотоника #5/2022
Д. С. Трубашевский
Eppur si muove, или забудьте все, что вы знали о классической 3d-печати
DOI: 10.22184/1993-7296.FRos.2022.16.5.358.368 Главная цель аддитивного производства (АП) – это значительное повышение производительности серийного производства. Динамичное развитие аддитивных технологий (АТ) связано с перспективами их автоматизации при внедрении в конструкции станков модульных компоновочных решений. Рассмотрены схемы, в которых рабочий стол представляет собой важный элемент для автоматизации производства и увеличения производительности всего технологического комплекса. Использование круглого стола с полярными координатами может повлиять на производительность АП. Рассмотрены разные АТ, в том числе MJM, STEP, MoldJet, HSR, для демонстрации использования таких столов.
Электроника НТБ #7/2022
А. Горелов
ИССЛЕДОВАНИЕ ЧЕРНИЛ ДЛЯ 3D-ПЕЧАТИ ЭЛЕКТРОНИКИ: ВЫБОР ТЕХНОЛОГИЙ
DOI: 10.22184/1992-4178.2022.218.7.146.151 Описан начальный этап исследований по созданию прототипа отечественной технологии 3D-печати печатных плат, ведущихся в МАИ по госзаданию от Министерства науки и высшего образования РФ. За основу взята технология струйной печати PolyJet, задачей начального этапа является разработка методики получения проводящих чернил из производимых в России исходных материалов.
Станкоинструмент #2/2022
П. А. Петров, Д. Р. Агзамова, Н. С. Шмакова, В. А. Пустовалов, Б. Ю. Сапрыкин, И. А. Чмутин, Е. Д. Жихарева
Cвойства пластика PETG после 3D-печати по технологии FFF. Часть 2
DOI: 10.22184/2499-9407.2022.27.2.58.64 Рассмотрено влияние режима 3D-печати на комплекс механических, оптических и тепловых свойств термопластичного прозрачного полимерного материала PETG (полиэтилентерефталат-гликоль), обработанного по аддитивной технологии FFF (Fused Filament Fabrication). Показано наличие зависимости между коэффициентом пропускания света, толщиной образца и его ориентацией во время 3D-печати.
Станкоинструмент #1/2022
П. А. Петров, Д. Р. Агзамова, Н. С. Шмакова, В. А. Пустовалов, Б. Ю. Сапрыкин, И. А. Чмутин, Е. Д. Жихарева
Cвойства пластика PETG после 3D-печати по технологии FFF. Часть 1
DOI: 10.22184/2499-9407.2022.26.1.52.59 Рассмотрено влияние режима 3D-печати на комплекс механических, оптических и тепловых свойств термопластичного прозрачного полимерного материала PETG (полиэтилентерефталат-гликоль), обработанного по аддитивной технологии FFF (Fused Filament Fabrication). Показано наличие зависимости между коэффициентом пропускания света, толщиной образца и его ориентацией во время 3D-печати.
Станкоинструмент #1/2022
Д. К. Рябов, И. А. Грушин, А. Г. Сеферян
Некоторые особенности формирования структуры и свойств новых алюминиевых сплавов при аддитивном производстве
DOI: 10.22184/2499-9407.2022.26.1.44.50 Представлены результаты исследований ряда алюминиевых сплавов различных систем легирования, получаемых по технологии СЛС, и проведен их сравнительный анализ с традиционными литейными и деформируемыми алюминиевыми сплавами.
Станкоинструмент #1/2022
И. О. Леушин, О. С. Кошелев, Л. И. Леушина, А. В. Нищенков, П. М. Явтушенко
Способ сборки блока аддитивных термоудаляемых литейных моделей
DOI: 10.22184/2499-9407.2022.26.1.40.42 Предложен усовершенствованный вариант сборки модельного блока. Модели отливок с питателями и стояка изготавливались 3D-печатью по аддитивной FDM-технологии из CAST-пластика. Приведены результаты проверки эффективности сборки в условиях действующего производства.
Станкоинструмент #1/2021
Е. БОГОДУХОВА, П. ПЕТРОВ
ПРИМЕНЕНИЕ ПОТОКОВОГО АНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ НЕДОСТАТКОВ КОНСТРУКЦИИ МИКРОШНЕКОВОГО ЭКСТРУДЕРА ДЛЯ 3D-ПЕЧАТИ ВЫСОКОТЕМПЕРАТУРНЫМИ ПОЛИМЕРАМИ
DOI: 10.22184/2499-9407.2021.22.1.40.47 На базе виртуального эксперимента с использованием программы T-FLEX Анализ определены основные направления развития конструкции микрошнекового экструдера для 3D-печати высокотемпературными полимерами. Выявлены тепловые потери, возникающие в существующей конструкции и приводящие к снижению производительности.
1
2
→
Разработка: студия
Green Art