In this work, samples of nanoscale copper oxide stabilised with glyceryl cocoate were prepared by chemical precipitation in aqueous medium. Scanning electron microscopy microstructure studies showed that the copper oxide sample is represented by irregularly shaped agglomerates of size from 1 to 30 μm, which consist of nanoparticles diameters from 5 to 50 nm. Phase composition studies showed that the obtained sample is copper (II) oxide with monoclinic-beta crystal lattice, in this case the space group corresponds to C2/c. As a result of computer quantum-chemical modelling of interaction between glyceryl cocoate and copper oxide, it was found that the presented compound is energetically favourable (∆E = 1714.492 kcal/mol) and the interaction occurs via the carboxylate anion. This compound possesses a chemical rigidity value η ≥ 0.050 eV, indicating its stability. Interaction between glyceryl cocoate and copper oxide was found to occur through the carboxyl group by IR spectroscopy. During optimisation of the synthesis technique, it was found that the optimal parameters for obtaining CuO nanoparticles with an average hydrodynamic radius of less than 200 nm are temperatures in the rage of 95 to 100 °C, mass of copper acetate from 3 to 4 grams and concentration of stabiliser PEG-7 from 1–3%.

sitemap

Разработка: студия Green Art